PHYSICAL REVIEW E VOLUME 59, NUMBER 4 APRIL 1999

Quasielliptical motion of an electron in an electric dipole field
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(Received 28 September 1998

A reformulation of a known conservation law is employed to study certain zero energy trajectories
of a classical point test charge.g., a classical electrprmoving under the influence of the electrostatic
force due to a fixed electric dipole. It is found that the motion takes place along a “folded” ellipse with
foci at the dipole charges and a fold along an axis perpendicular to the line joining these foci and lying in
the plane of the motion. The motion is determined to be periodic with periddl,yg)
= ym\4me, /qQ(/m/2[ T (1/4)/T'(3/4)])[ 5d%?+ (2/\/d)y2], whered is the separation of the dipole charges
that are placed symmetrically about the origin on xheis, andy, is the initialy position of the test charge
that starts from rest at (). [S1063-651X%99)01204-0

PACS numbe(s): 45.05+x, 05.45.Ac, 34.10tx, 02.30.Wd

I. INTRODUCTION E<0 motion is complex and not the focus here, although we
hope this work describes a starting point for investigating
Both the motion of a test charge trapped in a static electri¢his possibly chaotic motion of the test charge. Zero energy
dipole field and its gravitational cousin, the problem of “two motion that starts from rest at §Q) is quantifiable and a
centers of gravitation,” have a long histofg—5] and have natural starting point for more general investigations. Let us
been formally treated in many treatises on advanced mechaROW turn to the formulation of this problem.
ics[6—9]. Over 200 years ago Euler proved the integrability
of the gravitational problem. However, few physical conclu- Il. ZERO ENERGY DYNAMICS
sions have been drawn from the mathematical results, which ] ] )
are formal relations between elliptic integrals. The complex- L€t 2a be the separation of electric dipole charges

ity of these integrals and their inverses has to date precludedls= ~d:d2=0>0} that are placed symmetrically about the

a physically meaningful interpretation of the motion, espe_prlglncontth(?X axis a:jpmtnts (—at,O) a'r&dte,(t)),hrespect]ively,
cially for the general case of bound motion. The difficulty in Iz?ng elziﬁiséaghg?oé—lni% Sr)r/i)\(/aerg. undeésr tﬁeairgﬁugngemi?
translation from mathematics to physics is largely due to the . ge Q e e

) T electrostatic forces due to this fixed electric dipole. If the test
fact that the test-charge motion for bound motion is ex-

tremely complex, perhaps even chaotic. This is unfortunatec 12r9€ is located ax(y), then the potential energy of this

since this simple physical system is of general interest and ig?/sif:c]: elsftJo(mx,){%: ?35,{[42521%(@ 1t; 1,{:;;]} ,ﬁ)\(/ér:je::ehgr; rt?e
studied at some level by many physicists. " 12

=(x*+3a)2+y2
It i.S also well.known that t.he Ham'iltc')n-Jacobi 'equation (I);_tZZm: ):)f. elliptic coordinates{( #),x=a cosh{)cos()
for this problem is separable in an elliptical coordln'ate SYS2and y=asinh@)sin(g), so thatr,+r,/2=a coshg) and r,
tem[7-9]. For this problem the constants of separation Were_ j>_acos@). In elliptic coordinates the potential en-
identified a very long time ago. A separation constant asSOsrgy of the system is
ciated with the Hamilton-Jacobi equation provides a formal
definition of a first integral. However, a simple physical in- V(Z,0)=U(X(,0),y({,0))

terpretation of one of the separation constants has never been

given. In practical terms this has meant that little progress =—(qQ/mega) cod A)/cosh2{) —cog20)
has been made in physically understanding the test-charge
motion since the original work of Euler. In this paper a pre- = —Vo[cog §)/coshi2{) —cog26)],

sumably new physical interpretation of this separation con-

stant is given in Eq(3), which provides, almost immedi- WhereVy=qQ/meqa.

ately, an understanding of the zero energy motion that starts Let the dot denote differentiation with respect tcf
from rest at (Oyp). =df/dt. In terms of elliptic coordinates the kinetic energy
- We shall restrict our discussion to the special case of Mo T= 1 m(x2+y2) = ima?[ cosh(Z)—cos()(72+ ). The
tion in a plane, which we take to be they plane. The total | agrangian isL=T—V and the canonical momenta are

mechanical energ§ is conserved in this system, while an- = — Y12 _ : _ :
gular momentum is not. Instead the separation constant 51 &Lzmg ama [COSh(Z). cos(@)){ and py=dL/do
= sma‘[ cosh(Z)—cos(¥)]6.

Eq. (3) provides a second conserved quantity. B¥0 mo- »
tion is unbounded; the test charge escapes to infinity. The The Hamiltonian of the system i#H=pg' —L=p?
+ pﬁ/ maZ[ cosh(Z)—cos(X)]—V [ cos@)/cosh(Z)—cos(d)]

=P+ p;—maV, cos@)/macosh(Z)—cos(¥)] which s

*Electronic address: nsh@susan.ep.utsa.edu conserved. LeE denote the constant value Hfon a given
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trajectory. The Hamilton-Jacobi equatiorH(Z,6,0S/
dL,05/90)+9SIdt=0 is separable, S=—Et+S;({)
+5S,(6). Si(¢) and S,(0) solve @S,/92)%+ (9S,/96)?
=ma’V, cos@)+malcosh(Z)—cos(H)JE = maV,cos@)
+2maf[costt({) —co(6) E. Separating variables yields

IS\ 2 )
(ﬂ_g) —2ma’E cosH({)=consta (1)
and
2
—(%) +ma’[Vycog ) —2Ecog(f)]=a. (2

a and E characterize the classes of the different possible

trajectories. SubstitutingS/9{=9S,/d{=p, =4dL/a¢ into
Eq. (1) yields (after some algebjaan alternatlve evaluation
for the separation constant as

= —2maE cosH(¢) + m2a*[ cosH(¢) — co( 0) 122

rar2
(ri+r,)%2—4a?

E(ry+ry)?
2

2

©)

(ry+ry)2.
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around the fixed positive dipole charge, always to the right of
(a,0), intersecting thex axis at \/a2+y02. The motion
continues along a symmetricéteflected arc to (0 y)
where the test charge is instantaneously at flegtenergy
conservation The motion then reverses and finally arrives
back at the starting point at §g,) after an elapsed time.
The orbit follows an ellipse folded over onto itself, thexis
coinciding with the fold axis. Before folding along tyeaxis,
the ellipse foci coincide with the locations of the fixed
charges of the electric dipole. This type B0 motion is
periodic.

A general expression for the period may be found as
follows. For virtual paths conserving energy and whose
varlatlons have fixed coordinate end pointdS+ Eét

=0, where S= ftLdt ft(pq H)dt= ft q'dt—E(t

—t9)=S,—E(t—ty). Here = ft piq'dt=S,+S, is Ham-
ilton’s characteristic function, also called thbbreviated ac-
tion, andt is the time at which a point on the trajectory is
occupied[7,8]. The variation ofS with respect toE is §S

= 6Sy— Eét—(t—ty) SE. Therefore, as is very well known,
t+const 9S,/9E [7,8]. For motion about a folded ellipse
r{+ro=2a cosh@)=2\/a2+y02=const, and the period of
the zero energy motion is therefore given by

Surprisingly, this physical interpretation of the separation

constant seems to be new, and has made the analysis of the

zero energy motion possiblbelow).

Similarly, substitutinggS/a6=3dS,/30=p,=dL/36 into
Eq. (2) yields

a=—mPa*[cosif(¢) — cof()]26%+ma? V, coq 6)

—2ma’® E cos(6). (4)

d ]
T(a,yo)= 4([ > e ) )
(£,6=0)

JE JE
where E and « are set equal to zero after performing the
differentiation. What should be differentiated? One knows
that the complete integral to the Hamilton-Jacobi equation
containsn+1 constants, one of which is purely additive,
wheren is the number of coordinate degrees of freedom. In

(£,0=ml2)

Eliminating dt from these two equations gives the equationthis casen=2 and the constants afeand «, these param-

for {=¢(6):

(dg)z_ a+2ma’E cost({)
a0l =

ma? Vo cog ) —2ma’E cof(6)—a

©)

eters classifying the different trajectory classes. One also
knows that Hamilton’s characteristic function defines a ca-
nonical transformation frond to a constant canonical coor-
dinate «. However, the previous variation & is with re-
spect toE [and t, with 6t=(dt/9dE)SE, where 6S+Eét

A complete integral of the Hamilton-Jacobi equation is =0] with the coordinate end points held fixédlaupertuis’

provided by[7]

S(H)== J Ja+2ma’E cosH(¢) d¢,
6=const
52(0)th V= a+malV,cog ) — 2ma’E cos(6)
£=const
xd#. (6)

principle). The independent parameters in this variation are
accordinglyE and the original coordinateg (#), since oth-
erwise there is no way to ensure ti&t=0 and50=0 at the
end points. Thus, hidden in this variation is an implicit ca-
nonical transformation fromx back to the original coordi-
nates. Hencev=a(E,{,p,) during this variation, as mani-
fested by Eq.(1). It should be emphasized that in general
dalJE+# 0 under this variation.

For purposes of calculatingda/dE, only geo-
metrical (kinematica] but not dynamical substitutions

Let us consider th&=0 motion that starts from rest on are allowed in Eq(3). For example, we do not substitute
they axis at (Oyo). Since the test charge starts from rest,in this identity for, say,Z by solving for £ in the express-
r,+r,=0 initially. From Eq.(3) we see thaiw=0 for this ion for the conserved total energl. Only an explicit
trajectory. But the pairE,«)=(0,0) classifies this motion, E dependence contributes to the partial derivative.
each parameter retaining its vglue_throughout the course flicit contributions such as du/d¢)(3Z/JE) are not in-
the motion. We conclude that;+r,=0=r;+r,=const cluded. To evaluate this partial derivative, we use ),
=2./a®+y2, which describes &olded) ellipse with foci at  which gives da/dE=—2ma? costf({)=—m{(r,+r,)%/2]
the dipole charge positions. —2m(a2+y§). Hence 9S,/dE=0 (the numerator of

Typically, the test-charge motion proceeds fromyg0, this integral vanishgs Therefore T(a,yq)=4A[dSy/
>0) to the right and downward along an arc that bends)E] = 4A[3S,/ JE] = 2[ 77 — (dal JE) — 2ma? cos(6)/

Im-
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JmatV, cos@)]d6=4\me,/qQ Jm/a [T a®sif(6)+yy  =constlx=const. Also, ifE=0, thena=0 and the motion
Jcos@)]dé. Since [T a?sir(6) + y¥\codH)]ds = |Ns alor_1g re]\ folded degeneLate_ h)I/peerWZ., thfe %;;(iis).
1,2 4 1,2 - ow, in the quantum mechanical treatment of t n
[TABTEH](5a% + 2yp), one finds that the existence of a conservation law associated keads to a
“hidden” symmetry that allows electron terms of the same
symmetry to cross; this intersection is otherwise forbidden
by the Neumann-Wigner noncrossing rule. Classically, this

Are T4\ (2 1 -V
T(a,yo)=Vm QQO(\/;F(3/4) )(§ ad2+ ﬁyg) conserved quantity is
\/— 47750( \/;F(1/4)> 1d3/2 2 5 E( )2—m? rfr%('rz—'rl)z (10
- 207+ —=vy5 |, m=(r;—ry)2—m—————
MmN | Var@m /|39 g L L Ty
8

] ] ] One important aspect of theguantum mechanical
whered=2a is the separation of the dipole charges. Noteg|ectron-dipole interaction concerns the existence of bound
that \m/2[T'(1/4)/T (3/4)]=K(1/\2), whereK is the com-  states, which can only exist if the electric dipole moment

plete elliptic integral of the first kind. . exceeds some critical value. We may hope to gain some
A simpler but less instructive approach to calculating thejnsight into this phenomenon by employing the semiclassical
period is to solve Eq(4) for dt, Bohr-Sommerfeld quantization rulgp dg=(n+3)h to

“quantize” this system. Considefp,dé=(n+3)h. Solv-
ing for p, from Eq.(2) and substituting in this integral yields
cost({) — cog(6) do, (9 2] 72 maVocosl)—2Ecos(9)]-add=(n+h. Evalu-

’ ating this for =0 and E=0 gives &+mV,Ei(7/4|2)
=(n+3)h, where Ei@|m) is the elliptic integral of the sec-
ond kind and Ei¢r/4|2)~2.396 28. Squaring for the case

evaluate this aE=0 anda=0, and compute four times the =0 gives 64na?(qQ/ weya)Ei(m/4/2)>=h?/4, which im-
integral from =0 to #=m/2. This gives exactly the same plies that qa=me,h?/256mQEi(7/4/2)?>. We find that
result as above, but does not shed light on the nature of theemiclassically there is also a threshold for bound states.
variationséS and Sa. However, there may be no purely classical analog to this
minimum critical value.
A generalization of Eq(8) may not exist for negative
lIl. CONCLUSION energy motion. Indeed, the<0 motion appears to be cha-
otic. At present we have not found initial coordinates that
The E=0 motion in a static electric dipole field of a test produce periodic motion. Let the origin for polar coordinates
charge that starts from rest on the symmetry axis perpendicu=1/r,6) be the position of the right charge of the dipole,
lar to the line joining the dipole charges has been investiwherer is the distance of the test charge to the origin. Fol-
gated. It has been shown that thE<0,0=0) motion is  lowing a general procedure advocated by McCaliled}, let
periodic and takes place on a folded ellipse with period given,s define the sequenéa,} as the value ofi when9=0 and

by Eqg.(8). To obtain this result we have used the very well . . -
known fact that the Hamilton-Jacobi equation for this syste > 0. We have found that there exists an iterated map,

is separable. An apparently new simple physical interpreta= f(Un), with f(,X):a—BZ(a'ﬂLX, that represents this se-
tion of the separation constaatin Eq. (3) has been found, fi€s.a,8 and«' are functions of initial positiorithe test
which leads to a simple geometrical interpretation of the mo€harge always starts from rgst is not bounded above or
tion. below. It has(in general, complexfixed points a—a'/2

It is of interest to apply a similar geometrical analysis to = V(a+ a’/2)"— p*. Iterations of this map yield a continued
the classical analog of the Born-Oppenheimer states,of H fraction representation of an irrational number. This is not a
[10]. The potential energy in this case I3y «(x,y)=  typical property of a chaotic map. In fact, &<0 motion is
—Vo{Lry+ 1} where Vo=qQ/meoa, and q=Q equals bounded by “initial” equipotential curves, so perhaps expo-

the proton charge. To perform the analysis we consider thgential divergen(_:e O.f hearby traj_ectorie_s is not a particula_lrly
transformation r,+r,/2=acoshf)=c and r,—r,/2 useful characterization of chaotic motion here. The motion
1 2le— - 1 2

—acos@)=s, from whichr,=c+5 andr,=g— 5. Com- gets “scrambled” by a slingshot effect. There are occasions
parison with, the electric éipole potentigl ener@(x v) when the test charge approaches the attracting fixed charge
“\o{1/r,—1/r,} shows that if one interchanges an(’j 5 of the dipole nearly head-on. Whether the test charge is

and makes the replacemevig— —V,, then the electric di- whipped around the fixed charge in the counterclockwise or

ole potential eneray mans intd After rewritin in clockwise_dire_ction can depend on digits i_n initial_coordi-
pole p 9y p Hy™ ga. nates arbitrarily far to the right of the decimal point. The
terms ofo and 6 and then interchanging and 6, one finds  ¢omplex E<0 motion of this charge has the potential to
that a—m(E/2) (rl—rz)z—mz[rirg (rp,—r)2(r—rq)? provide a rich laboratory for theoretical experimentation in
—4a?]. One concludes that for hyperbolic motion,{r nonlinear dynamics.

dt=ma’
Vma? V,cod 0) —2ma’ E cos () — a
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