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Quasielliptical motion of an electron in an electric dipole field

Patrick L. Nash* and Rafael Lopez-Mobilia
Division of Earth and Physical Sciences, The University of Texas at San Antonio, San Antonio, Texas 78249-0663

~Received 28 September 1998!

A reformulation of a known conservation law is employed to study certain zero energy trajectories
of a classical point test charge~e.g., a classical electron! moving under the influence of the electrostatic
force due to a fixed electric dipole. It is found that the motion takes place along a ‘‘folded’’ ellipse with
foci at the dipole charges and a fold along an axis perpendicular to the line joining these foci and lying in
the plane of the motion. The motion is determined to be periodic with periodT(d,y0)

5AmA4pe0 /qQ„Ap/2@G(1/4)/G(3/4)#…@ 1
3 d3/21(2/Ad)y0

2#, whered is the separation of the dipole charges
that are placed symmetrically about the origin on thex axis, andy0 is the initial y position of the test charge
that starts from rest at (0,y0). @S1063-651X~99!01204-0#

PACS number~s!: 45.05.1x, 05.45.Ac, 34.10.1x, 02.30.Wd
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I. INTRODUCTION

Both the motion of a test charge trapped in a static elec
dipole field and its gravitational cousin, the problem of ‘‘tw
centers of gravitation,’’ have a long history@1–5# and have
been formally treated in many treatises on advanced mec
ics @6–9#. Over 200 years ago Euler proved the integrabil
of the gravitational problem. However, few physical conc
sions have been drawn from the mathematical results, w
are formal relations between elliptic integrals. The compl
ity of these integrals and their inverses has to date preclu
a physically meaningful interpretation of the motion, esp
cially for the general case of bound motion. The difficulty
translation from mathematics to physics is largely due to
fact that the test-charge motion for bound motion is e
tremely complex, perhaps even chaotic. This is unfortun
since this simple physical system is of general interest an
studied at some level by many physicists.

It is also well known that the Hamilton-Jacobi equati
for this problem is separable in an elliptical coordinate s
tem @7–9#. For this problem the constants of separation w
identified a very long time ago. A separation constant as
ciated with the Hamilton-Jacobi equation provides a form
definition of a first integral. However, a simple physical i
terpretation of one of the separation constants has never
given. In practical terms this has meant that little progr
has been made in physically understanding the test-ch
motion since the original work of Euler. In this paper a pr
sumably new physical interpretation of this separation c
stant is given in Eq.~3!, which provides, almost immedi
ately, an understanding of the zero energy motion that st
from rest at (0,y0).

We shall restrict our discussion to the special case of m
tion in a plane, which we take to be thex-y plane. The total
mechanical energyE is conserved in this system, while an
gular momentum is not. Instead the separation constan
Eq. ~3! provides a second conserved quantity. TheE.0 mo-
tion is unbounded; the test charge escapes to infinity.
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E,0 motion is complex and not the focus here, although
hope this work describes a starting point for investigat
this possibly chaotic motion of the test charge. Zero ene
motion that starts from rest at (0,y0) is quantifiable and a
natural starting point for more general investigations. Let
now turn to the formulation of this problem.

II. ZERO ENERGY DYNAMICS

Let 2a be the separation of electric dipole charg
$q152q,q25q.0% that are placed symmetrically about th
origin on thex axis at points (2a,0) and (a,0), respectively,
in a Cartesian coordinate system. A test charge of masm
and electric charge2Q,0 moves under the influence o
electrostatic forces due to this fixed electric dipole. If the t
charge is located at (x,y), then the potential energy of thi
system isU(x,y)5qQ/4pe0$1/r 121/r 2%, where r i is the
distance from the test charge to thei th fixed charge,r 1,2

2

5(x6a)21y2.
In terms of elliptic coordinates (z,u),x5a cosh(z)cos(u)

and y5a sinh(z)sin(u), so that r 11r 2/25a cosh(z) and r 1
2r 2/25a cos(u). In elliptic coordinates the potential en
ergy of the system is

V~z,u!5U„x~z,u!,y~z,u!…

52~qQ/pe0a! cos~u!/cosh~2z!2cos~2u!

52V0@cos~u!/cosh~2z!2cos~2u!#,

whereV05qQ/pe0a.
Let the dot denote differentiation with respect tot, ḟ

5d f /dt. In terms of elliptic coordinates the kinetic energ
is T5 1

2 m( ẋ21 ẏ2)5 1
4 ma2@cosh(2z)2cos(2u)#(ż21u̇2). The

Lagrangian isL5T2V and the canonical momenta a
pz5]L/]ż5 1

2 ma2@cosh(2z)2cos(2u)#ż and pu5]L/]u̇

5 1
2 ma2@cosh(2z)2cos(2u)#u̇.
The Hamiltonian of the system isH5piq̇

i2L5pz
2

1pu
2/ma2@cosh(2z)2cos(2u)#2V0@cos(u)/cosh(2z)2cos(2u)#

5pz
21pu

22ma2V0 cos(u)/ma2@cosh(2z)2cos(2u)# which is
conserved. LetE denote the constant value ofH on a given
4614 ©1999 The American Physical Society
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trajectory. The Hamilton-Jacobi equationH(z,u,]S/
]z,]S/]u)1]S/]t50 is separable, S52Et1S1(z)
1S2(u). S1(z) and S2(u) solve (]S1 /]z)21(]S2 /]u)2

5ma2V0 cos(u)1ma2@cosh(2z)2cos(2u)#E 5 ma2V0 cos(u)
12ma2@cosh2(z)2cos2(u)#E. Separating variables yields

S ]S1

]z D 2

22ma2E cosh2~z!5const[a ~1!

and

2S ]S2

]u D 2

1ma2@V0 cos~u!22E cos2~u!#5a. ~2!

a and E characterize the classes of the different poss
trajectories. Substituting]S/]z5]S1 /]z5pz5]L/]ż into
Eq. ~1! yields ~after some algebra! an alternative evaluation
for the separation constanta as

a522ma2E cosh2~z!1m2a4@cosh2~z!2cos2~u!#2ż2

52m
E~r 11r 2!2

2
1m2

r 1
2r 2

2

~r 11r 2!224a2
~ ṙ 11 ṙ 2!2. ~3!

Surprisingly, this physical interpretation of the separat
constant seems to be new, and has made the analysis o
zero energy motion possible~below!.

Similarly, substituting]S/]u5]S2 /]u5pu5]L/]u̇ into
Eq. ~2! yields

a52m2a4@cosh2~z!2cos2~u!#2u̇21ma2 V0 cos~u!

22ma2 E cos2~u!. ~4!

Eliminating dt from these two equations gives the equati
for z5z(u):

S dz

du D 2

5
a12ma2E cosh2~z!

ma2 V0 cos~u!22ma2 E cos2~u!2a
. ~5!

A complete integral of the Hamilton-Jacobi equation
provided by@7#

S1~z!56E
u5const

Aa12ma2E cosh2~z! dz,

S2~u!56E
z5const

A2a1ma2V0 cos~u!22ma2E cos2~u!

3du. ~6!

Let us consider theE50 motion that starts from rest o
the y axis at (0,y0). Since the test charge starts from re
ṙ 11 ṙ 250 initially. From Eq.~3! we see thata50 for this
trajectory. But the pair (E,a)5(0,0) classifies this motion
each parameter retaining its value throughout the cours
the motion. We conclude thatṙ 11 ṙ 2[0⇒r 11r 25const
52Aa21y0

2, which describes a~folded! ellipse with foci at
the dipole charge positions.

Typically, the test-charge motion proceeds from (0y0
.0) to the right and downward along an arc that ben
e

n
the

,

of

s

around the fixed positive dipole charge, always to the righ
(a,0), intersecting thex axis at Aa21y0

2. The motion
continues along a symmetrical~reflected! arc to (0,2y0)
where the test charge is instantaneously at rest~by energy
conservation!. The motion then reverses and finally arriv
back at the starting point at (0,y0) after an elapsed timeT.
The orbit follows an ellipse folded over onto itself, they axis
coinciding with the fold axis. Before folding along they axis,
the ellipse foci coincide with the locations of the fixe
charges of the electric dipole. This type ofE50 motion is
periodic.

A general expression for the period may be found
follows. For virtual paths conserving energy and who
variations have fixed coordinate end points,dS1Edt

50, where S5* t0
t Ldt5* t0

t (pi q̇
i2H)dt5* t0

t pi q̇
idt2E(t

2t0)5S02E(t2t0). HereS05* t0
t pi q̇

idt5S11S2 is Ham-

ilton’s characteristic function, also called theabbreviated ac-
tion, and t is the time at which a point on the trajectory
occupied@7,8#. The variation ofS with respect toE is dS
5dS02Edt2(t2t0)dE. Therefore, as is very well known
t1const5]S0 /]E @7,8#. For motion about a folded ellipse
r 11r 252a cosh(z)52Aa21y0

25const, and the period o
the zero energy motion is therefore given by

T~a,y0!54S F]S0

]E G
~z,u5p/2!

2F]S0

]E G
~z,u50!

D , ~7!

where E and a are set equal to zero after performing th
differentiation. What should be differentiated? One kno
that the complete integral to the Hamilton-Jacobi equat
containsn11 constants, one of which is purely additiv
wheren is the number of coordinate degrees of freedom.
this casen52 and the constants areE anda, these param-
eters classifying the different trajectory classes. One a
knows that Hamilton’s characteristic function defines a
nonical transformation fromz to a constant canonical coor
dinatea. However, the previous variation ofS is with re-
spect toE @and t, with dt5(]t/]E)dE, where dS1Edt
50] with the coordinate end points held fixed~Maupertuis’
principle!. The independent parameters in this variation
accordinglyE and the original coordinates (z,u), since oth-
erwise there is no way to ensure thatdz50 anddu50 at the
end points. Thus, hidden in this variation is an implicit c
nonical transformation froma back to the original coordi-
nates. Hencea5a(E,z,pz) during this variation, as mani
fested by Eq.~1!. It should be emphasized that in gener
]a/]EÞ0 under this variation.

For purposes of calculating]a/]E, only geo-
metrical ~kinematical! but not dynamical substitution
are allowed in Eq.~3!. For example, we do not substitut
in this identity for, say,ż by solving for ż in the express-
ion for the conserved total energyE. Only an explicit
E dependence contributes to the partial derivative. I
plicit contributions such as (]a/]ż)(]ż/]E) are not in-
cluded. To evaluate this partial derivative, we use Eq.~3!,
which gives ]a/]E522ma2 cosh2(z)52m@(r11r2)

2/2#
522m(a21y0

2). Hence ]S1 /]E50 ~the numerator of
this integral vanishes!. Therefore T(a,y0)54D@]S0 /
]E# 5 4D@]S2 / ]E# 5 2*0

p/2@ 2 (]a / ]E) 2 2ma2 cos2(u) /
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Ama2V0 cos(u)#du54Ape0 /qQ Am/a *0
p/2@a2 sin2(u)1y0

2/
Acos(u)#du. Since *0

p/2@a2 sin2~u! 1 y0
2/Acos~u!#du 5 Ap

@G~1/4!/G~3/4!#~ 1
3 a2 1 1

2 y0
2!, one finds that

T~a,y0!5AmA4pe0

qQ SAp
G~1/4!

G~3/4! D S 2

3
a3/21

1

Aa
y0

2D
5AmA4pe0

qQ SAp

2

G~1/4!

G~3/4!
D S 1

3
d3/21

2

Ad
y0

2D ,

~8!

whered52a is the separation of the dipole charges. No
that Ap/2 @G(1/4)/G(3/4)#5K(1/A2), whereK is the com-
plete elliptic integral of the first kind.

A simpler but less instructive approach to calculating
period is to solve Eq.~4! for dt,

dt5ma2
cosh2~z!2cos2~u!

Ama2 V0 cos~u!22ma2 E cos2~u!2a
du, ~9!

evaluate this atE50 anda50, and compute four times th
integral fromu50 to u5p/2. This gives exactly the sam
result as above, but does not shed light on the nature of
variationsdS andda.

III. CONCLUSION

The E50 motion in a static electric dipole field of a te
charge that starts from rest on the symmetry axis perpend
lar to the line joining the dipole charges has been inve
gated. It has been shown that the (E50,a50) motion is
periodic and takes place on a folded ellipse with period giv
by Eq. ~8!. To obtain this result we have used the very w
known fact that the Hamilton-Jacobi equation for this syst
is separable. An apparently new simple physical interpre
tion of the separation constanta in Eq. ~3! has been found
which leads to a simple geometrical interpretation of the m
tion.

It is of interest to apply a similar geometrical analysis
the classical analog of the Born-Oppenheimer states of H2

1

@10#. The potential energy in this case isUH2
1(x,y)5

2V0$1/r 111/r 2% where V05qQ/pe0a, and q5Q equals
the proton charge. To perform the analysis we consider
transformation r 11r 2/25a cosh(z)[s and r 12r 2/2
5a cos(u)[d, from which r 15s1d and r 25s2d. Com-
parison with the electric dipole potential energyU(x,y)
5V0$1/r 121/r 2% shows that if one interchangess and d
and makes the replacementV0→2V0 , then the electric di-
pole potential energy maps intoUH2

1. After rewriting a in

terms ofs andd and then interchangings andd, one finds
that a→m(E/2) (r 12r 2)22m2@r 1

2 r 2
2 ( ṙ 22 ṙ 1)2/(r 22r 1)2

24a2#. One concludes that for hyperbolic motion (r 22r 1
e

he

u-
i-

n
l

a-

-

e

5const)a5const. Also, ifE50, thena50 and the motion
is along a folded degenerate hyperbola~viz., the y axis!.
Now, in the quantum mechanical treatment of the H2

1 ion
the existence of a conservation law associated toa leads to a
‘‘hidden’’ symmetry that allows electron terms of the sam
symmetry to cross; this intersection is otherwise forbidd
by the Neumann-Wigner noncrossing rule. Classically, t
conserved quantity is

m
E

2
~r 12r 2!22m2

r 1
2 r 2

2 ~ ṙ 22 ṙ 1!2

~r 22r 1!224a2
. ~10!

One important aspect of thequantum mechanical
electron-dipole interaction concerns the existence of bo
states, which can only exist if the electric dipole mome
exceeds some critical value. We may hope to gain so
insight into this phenomenon by employing the semiclass
Bohr-Sommerfeld quantization rulerp dq5(n1 1

2 )h to
‘‘quantize’’ this system. Considerrpudu5(n1 1

2 )h. Solv-
ing for pu from Eq.~2! and substituting in this integral yield
2*2p/2

p/2 Ama2@V0 cos(u)22Ecos2(u)#2a du5(n11
2)h. Evalu-

ating this for a50 and E50 gives 8aAmV0Ei(p/4u2)
5(n1 1

2 )h, where Ei(fum) is the elliptic integral of the sec
ond kind and Ei(p/4u2)'2.396 28. Squaring for the casen
50 gives 64ma2(qQ/pe0a)Ei(p/4u2)25h2/4, which im-
plies that qa5pe0 h2/256mQEi(p/4u2)2. We find that
semiclassically there is also a threshold for bound sta
However, there may be no purely classical analog to t
minimum critical value.

A generalization of Eq.~8! may not exist for negative
energy motion. Indeed, theE,0 motion appears to be cha
otic. At present we have not found initial coordinates th
produce periodic motion. Let the origin for polar coordinat
(u51/r ,u) be the position of the right charge of the dipol
wherer is the distance of the test charge to the origin. F
lowing a general procedure advocated by McCauley@11#, let
us define the sequence$u̇n% as the value ofu̇ whenu̇50 and
y.0. We have found that there exists an iterated mapu̇n11

5 f (u̇n), with f (x)5a2b2/a81x, that represents this se
ries. a,b and a8 are functions of initial position~the test
charge always starts from rest!. f is not bounded above o
below. It has~in general, complex! fixed points a2a8/2
6A(a1a8/2)22b2. Iterations of this map yield a continue
fraction representation of an irrational number. This is no
typical property of a chaotic map. In fact, allE,0 motion is
bounded by ‘‘initial’’ equipotential curves, so perhaps exp
nential divergence of nearby trajectories is not a particula
useful characterization of chaotic motion here. The mot
gets ‘‘scrambled’’ by a slingshot effect. There are occasio
when the test charge approaches the attracting fixed ch
of the dipole nearly head-on. Whether the test charge
whipped around the fixed charge in the counterclockwise
clockwise direction can depend on digits in initial coord
nates arbitrarily far to the right of the decimal point. Th
complex E,0 motion of this charge has the potential
provide a rich laboratory for theoretical experimentation
nonlinear dynamics.
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